Build a Free Computer from Spare Parts

Page 2 of 6

Graphics Card and TV Tuner

Your graphics card can limit or enhance the overall performance of your computer. I had several older cards, some going back to a Rage Pro in an NLX (PDF) form factor.

But the best of the bunch was a Radeon X1600 Pro. In its day, it was a good performer without the top-heavy price tag. Right now, it's a nice low- to midrange graphics card that's a bargain when it's free. (All right, even if you had to buy it, you'd only be spending $70-$100 if you were smart. That's still cheap.)

I happened to find an old Nvidia DualTV MCE tuner card wrapped in a freezer bag right under the X1600. (I managed to get two of them in the six weeks between when I was impressed by the first one I bought and when Nvidia canceled them.) It's analog, but the tuners are good and Cablevision has promised to take care of me (and everyone else) when we change to digital broadcasts in February 2009.

Hard Drive

For some reason, the bulk of my spare hard drives are Parallel ATA (PATA). It might have something to do with the increasing acceptance of Serial ATA (SATA) as a valid performance enhancement. As I use up space on my drives, I clone the data onto larger, newer devices and then stash the old ones. As a result, I had a 500GB Maxtor PATA drive sitting in the pile. It was the right drive for the system.

Optical Drive

I only had one spare optical drive: an Asus DRW-1814BL. It's not bad, even if it is a LightScribe drive. (Using special DVD discs, you can print a label on the disc itself if you have some -- OK, a lot -- of spare time to kill.) The Asus, however, was a PATA drive and so it would need to share the interface with the hard drive. That could be a problem -- as I found out later, few, if any, cases are built to pair 3.5-in. and 5.25-in. devices effectively.


Because the Asustek motherboard I decided to use was an ATX-sized board, neither of the two micro ATX cases I had on hand would work.

The Antec P180 case I selected is literally last year's model; it's been replaced by the Antec P182. Still, the original has sound-deadening material on the side panels, three 120mm fans (which I had previously expanded to a fourth) and lots of drive bays. Its bottom-mounted power supply setup is an acquired taste, however.

The Antec P180 case has a drive bay arrangement similar to most cases: the 5.25-in. drive bays are way up here and the 3.5-in. bays are way down there. This presented a problem: I wanted to seat a 3.5-in. hard drive as the primary unit and a 5.25-in. optical drive as the secondary.

There was a three-in. space between lowest 5.25-in. bay and the highest 3.5-in. bay. Four and a half inches separate the connectors on the average PATA cable, which may seem like enough to span the bay gap. It's not.

Why? Because going with the existing bay structure meant that the 3.5-in. hard drive would become the second device on the cable and the 5.25-in. optical drive the first. Conventional wisdom is that your fastest drive (the hard disk in this case) should be the first device. I could have done that here by twisting the cable around a bit, but if I did, the distance between the two connectors would decrease with the twist and they would no longer reach their respective drives.

A 5.25-in. bay adapter (so that the 3.5-in. drive could go into a 5.25-in. bay) was an option, and I did have one on hand (naturally), but personally, I prefer a bit more panache. I found a used Antec Hard Drive Cooler in one of my new K-Mart plastic storage boxes of spares. The HD Cooler is basically an aluminum platform with side rails and a front panel into which the drive is installed. The cooler then mounts into a 5.25-in. bay, solving the distance problem. And that front panel isn't just a pretty face: it's used to alternately report the temperatures measured by the cooler's two sensors. Typically, I tape one to the drive and one to the power supply.

| 1 2 3 4 5 6 Page 2
Shop Tech Products at Amazon