How It Works: Hard Drives

What's in an Interface?

Typically, PCs rely on either a PATA (Parallel Advanced Technology Attachment) or SATA (Serial ATA) connection to a hard drive. You might even have both: Most modern motherboards offer both interfaces during the current period of transition from PATA to SATA; this arrangement is likely to continue for some time, as the PATA interface will remain necessary for connecting internal optical drives to the PC. The parallel in PATA means that data is sent in parallel down multiple data lines. SATA sends data serially up and down a single twisted pair.

PATA drives (also commonly called IDE drives) come in a variety of speeds. The original ATA interface of the 1980s supported a maximum transfer rate of 8.3MB per second--which was very fast for its time. ATA-2 boosted the maximum throughput to 16.6MBps. Subsequently, Ultra ATA arrived in 33MBps, 66MBps, 100MBps, and 133MBps flavors referred to as Ultra DMA-33 (Direct Memory Access) through Ultra DMA-133 or Ultra ATA-33 through Ultra ATA-133. The odds are overwhelming that you have Ultra ATA-66 or better unless your PC is more than seven years old. (Read "Timeline: 50 Years of Hard Drives" for an overview of how the technology has developed.)

You can typically recognize an ATA drive by its 2-inch-wide 40-wire or 80-wire cables, though some 40-pin cables are round. Desktop drives typically use a 40-pin connector; the extra wires on 80-wire cables are to physically separate the data wires to prevent crosstalk at ATA-100 and ATA-133 speeds. Notebooks with 2.5-inch drives use a 44-pin connector, and 1.8-inch drives use a 50-pin connector.

At 133MB per second, the ATA interface began to run into insurmountable technical challenges. In response to those challenges, the SATA interface was designed. At the moment, SATA comes in two flavors: 150MBps and 300MBps. Spec mongers may notice that those two versions are alternately referred to as 1.5-gigabit-per-second SATA and 3-gbps SATA, but the math seems a little fuzzy: 3 gbps divided by 8 (the number of bits in a byte) is 375MBps, not the 300MBps you'll see referred to. This is because the gigabits-per-second-speed is a signaling rate; 300MBps is the maximum transfer rate of the data. The roadmap for the interface sees speed doubling yet again. As it stands today, however, the sustained data transfer rate of single SATA hard drives is comfortably handled within the 150MBps spec. It takes a striped RAID, which feeds the data from two or more drives into the pipeline, to benefit from the greater bandwidth of a 300MBps interface.

SATA drives have a much thinner cable and smaller connectors than ATA drives, which allows for more connectors on motherboards and better airflow inside cases. And SATA simplifies setup by using a point-to-point topology, allowing one connection per port and cable. So gone are the jumpers and master/slave connections of PATA drives, where one cable would be used to connect two drives. And unlike PATA, SATA is also suitable for direct-attached external drives, allowing up to 2-meter-long cables on an interface (referred to as external SATA, or eSATA) that's significantly faster than USB 2.0 or FireWire. External SATA added a slightly different connector that's rated for more insertions and designed to lock in place, plus some additional error correction, but it is otherwise completely compatible.

One connection interface you hear less about these days is SCSI (for Small Computer System Interface). At one time, SCSI was a means to achieving faster performance from a desktop hard drive; however, the SATA connection has since replaced SCSI.

The Future of Hard Drives

Eventually, all desktop and mobile hard drives will use the SATA interface and perpendicular magnetic recording. Any new PC you look for should have a SATA interface at least; you can upgrade to a perpendicular drive later when prices fall. Expect capacities to continue to grow exponentially, and for performance to grow moderately. Read "The Hard Drive Turns 50" for a look at where hard drives have been, and where they're going.

Longtime PC World contributor Jon L. Jacobi is a freelance writer based in San Francisco.

Subscribe to the Power Tips Newsletter

Comments