Display Tech To Watch This Year

More Stories in this Series

Display Tech to Watch This Year: Haptics Create A Buzz

But that's exactly the focus of Senseg Ltd., a competing start-up. Its technology, like Pacinian's, is based on electrostatic fields, but instead of creating sensations when a user's finger presses the sensors' two layers together, Senseg's electrostatic field operates on the top surface, vibrating the user's finger and changing the friction between the finger and the surface.

The company claims that it can generate extremely refined textures, creating a range of touch sensations from sticky to slippery and from glass-smooth to sandpaper-rough. "We can replicate the pattern, using sets of frequencies, to synthesize texture, or a boundary, or something pulsating in your hand," says Ville Makinen, CEO of Helsinki, Finland-based Senseg.

Senseg breaks the haptic sensor area into a matrix of fingertip-size elements that it calls "pixels." Varying feedback between these pixels is what creates the sensation of movement under a finger or hand. Makinen says increasing pixel matrix densities will further refine the user sensation. Today, he says, "we can stimulate half of a finger, or just a portion of it."

Senseg's haptic feedback technology allows users to feel the surface of this air hockey table, sense the movement of the pushers and feel the puck as a pusher strikes it.

While haptic technologies can approximate textures, not even Senseg's technology is going to give the full tactile feedback you'd experience by, say, touching a real cashmere sweater. When combined with visual and auditory input, however, haptics can enhance the touch-computing experience, says Makinen. "The important thing is the holistic experience. What you see, you also tend to feel."

Senseg says it's working with Toshiba but its technology has yet to be implemented in any commercially available products.

Coming soon to a device near you?

So far, even basic haptics technology hasn't caught on in a big way outside of smartphones, and more advanced haptics systems will take some selling. The challenge, says Sheehan, is convincing manufacturers that there's "sufficient value in the technology to adopt it in their devices."

Today, users don't see haptics alone as a selling point. "You're not going to go out there and say 'I need to get this phone because it has great haptics,'" says Tuong Nguyen, an analyst at Gartner. "It's not sexy."

But Andrew Hsu, technology strategist at touch-screen maker Synaptics, thinks that will change. Haptics could become a checklist feature in tablets and other mobile touch displays, just as multitouch interactivity is today, he says. In the future, he predicts, "if you have a touch-screen device and you don't have this technology, you'll feel that the device is broken."

That remains to be seen. But Nguyen says the technology will continue to make inroads in areas such as gaming, virtual worlds, training tools and simulation environments, and in smartphones, tablets and other mobile computing systems. The more sophisticated, high-definition haptics technologies might take another year or two to catch on and find their way down the cost curve.

But that could change overnight if a must-have mobile device popularizes it. "If the next iPhone has it, then everyone is going to have to have it," says Nguyen. "That was the case with multitouch. That is the case with gyroscopes, which Apple introduced with the iPhone 4. And that could be the case with haptics."

See the first in our series of display technologies to watch this year: "Multitouch catches fire." And be sure to check back next week for another sizzling display technology.

Robert L. Mitchell is a national correspondent for Computerworld. Follow him on Twitter at

Twitter
Twitter
twitter.com/rmitch , or e-mail him at rmitchell@computerworld.com.

For comprehensive coverage of the Android ecosystem, visit Greenbot.com.

Subscribe to the Best of PCWorld Newsletter

Comments