PC Building Best Practices: Hardware

PC Building Best Practices: Hardware
We publish a plethora of PC build guides here at PCWorld. In the past few months alone, we’ve covered how to build a quiet, energy-efficient PC, how to assemble a powerhouse Sandy Bridge-E computer, and how to put together a compact gaming machine and a compact energy-efficient system. All of those articles follow a certain theme and deal with the component selection and performance levels of the systems.

This time around, we’re taking a different approach. In this piece, we’re going to look at system building from a nuts-and-bolts perspective and outline some of the most common problems that can arise when you're assembling a PC. While it is true that most computer components can be installed in only one way, or fit in only one type of slot, the process involves some subtle nuances that only experienced PC builders know to watch out for.

With that in mind, here are some of the issues that are most likely to crop up when you're installing processors, heatsinks and coolers, motherboards, memory, graphics cards, drives, and power supplies. Print this article out and post it near your work area to ensure that you always have access to basic PC building best practices.

Processors

Before installing a CPU, ensure that its socket is clean and free from dust or debris. An improperly seated CPU can cause all sorts of problems, from overheating to a nonbootable system.

Installing a processor is straightforward: Processors are keyed to fit into a socket in only one direction, and they don’t require tools to install. A few things can go wrong, however.

First, it’s important to ensure that the processor’s socket is clean and free from dust or debris. If the socket has any foreign matter that could prevent the processor from seating properly, significant problems could occur. Before placing the processor into its socket, give the socket a thorough physical inspection (without touching any contacts) and make certain that the socket has nothing in it that could interfere with the processor. Proper seating and alignment are of the utmost importance when you're installing a CPU.

With AMD processors, it’s also vitally important not to bend any pins. Intel processors use a different type of packaging and don’t have pins on their underside (the pins are in the socket), but AMD chips still have hundreds of delicate pins that are relatively easy to bend. When handling an AMD CPU, grasp it from the sides only, inspect its underside to confirm that no pins are bent, and use minimal force as you insert it into the socket. In fact, an AMD processor should just drop into its socket, provided that all of the pins are aligned properly.

Coolers/Heatsinks

A little dab will do. Installing too much (or too little) thermal interface material is a common rookie mistake. You'll want to use just enough to create a razor-thin layer that covers the processor's integrated heat spreader.

When new system builders attempt to install CPU coolers or heatsinks, they tend to make three mistakes: They use too much (or too little) interface material, they seat the cooler improperly, or they point the cooling fan in the wrong direction.

Before installing a CPU cooler, make sure that the chip’s integrated heat spreader and the cooler’s base are clean. Afterward, it’s important to apply a high-quality thermal interface material. TIMs help facilitate heat transfer from the chip into the base of the heatsink. Using too much or too little TIM can hinder the heat transfer, however. Use just enough to cover the processor’s integrated heat spreader with a paper-thin layer. A dab a little larger than a BB but smaller than a pea will do.

In addition, it is critical to confirm that the cooler or heatsink is seated properly and making good contact with the CPU. Make sure that there's nothing surrounding the socket area that could interfere with the cooler, and when you're positioning it over the CPU, check that it is seated perfectly flat. If a CPU cooler is even slightly off-kilter, the processor is likely to overheat and take damage.

If you have a tower-type cooler, it’s also crucial to mount the cooler in such a way that its fan blows air through the heatsink fins, toward the exhaust fan. Typically that means pointing the cooler’s fan in the direction of an exhaust fan at the rear or top of the case. Pay special attention to the design of your particular case, though, as some rear-mounted fans are actually intakes.

Motherboards

When you're assembling a PC, few things are more frustrating than having to remove the motherboard to install a CPU cooler. If the motherboard tray in your case doesn't have a cutout in the area behind the CPU socket, install the CPU cooler before mounting the motherboard.

Installing the motherboard is one of the more tedious tasks when you're building a system. It’s relatively simple, but it requires installing a slew of standoffs and screws, in just the right location. And when something goes wrong, pulling out a motherboard can be a real pain, especially if you’re almost done with the build and have to rip out a bunch of expansion cards too.

Before installing the motherboard into the case, you should almost always take care of two other tasks first: installing the motherboard’s custom I/O shield, and mounting the CPU and cooler. You can’t put the I/O shield in place once the motherboard is mounted, so install it before locking down the mobo. And if your case doesn’t have the proper cutouts in its motherboard tray to allow for CPU cooler installations on an already installed motherboard, handle that job before installing the board too.

Some of the most common issues that new system builders face relate to the brass standoffs included with most cases. Brass is a relatively soft metal, so stripping the threads on the standoffs is somewhat easy. Be sure to use only enough force to keep them snug against the motherboard tray; finger-tightening is usually sufficient. Use caution when installing the screws that hold the motherboard in place into the standoffs, again to avoid stripping the threads. Tighten the screws just enough to hold the motherboard without causing vibration; there's no need to crank them down and put undue pressure on the motherboard.

Also, use only as many standoffs as your type of motherboard requires. If you have any additional standoffs underneath the motherboard that don’t line up with screw holes, remove them. Extra standoffs underneath a motherboard can cause a short or eventually wear their way through a trace and damage the board.

Memory

Not all memory is created equal. Some enthusiast-class memory modules are outfitted with extremely tall heat spreaders that could cause clearance issues in small enclosures or underneath large, aftermarket CPU coolers that may overhang the memory slots.

Memory is one of the easier components to install in a system. Provided that you have the correct type of RAM for your rig, it will be keyed to fit into the memory slots in only one way. Before doing anything, however, consult your motherboard’s manual to determine the correct memory slots to use. Most current systems require double-, triple-, or even quad-channel memory configurations to achieve optimal performance, and the memory sticks must be installed in the correct slots to ensure multichannel operation. If you install the memory in the incorrect slots, the system will probably still boot, but it may operate in single-channel mode, which will affect performance adversely.

Another thing to consider is the height of the memory sticks. Many high-performance modules have relatively tall heatsinks that may not fit in some compact enclosures or underneath aftermarket CPU coolers that overhang the memory slots.

Next Page: Installing Graphics Cards, Drives, Power Supplies, and Case Components

Subscribe to the Business Brief Newsletter

Comments