How to Build a Compact Gaming PC

Today's Best Tech Deals

Picked by PCWorld's Editors

Top Deals On Great Products

Picked by Techconnect's Editors

Going to a LAN party? You don't have to choose between lugging around your desktop or settling for a subpar gaming laptop. I'll show you how to cram the guts of a gaming PC into a slim case with a MicroATX motherboard.

Here's what you need to build a small, powerful gaming PC.
For years I’ve tried to build systems in small cases based on a MicroATX motherboard, always with mixed results. The limiting factor has most often been the case itself; most MicroATX case designers assume you want as tiny a package as possible, which usually restricts how much storage you can have, the size of the power supply, and the maximum length of the graphics card--and you can just forget about a custom cooler.

A few minitower cases are a little bigger, but they’re oriented toward small-office PCs. I’ve also looked at the Antec Mini P180, but it’s almost as heavy as a standard P183, so it wasn't worth my time for this kind of project.

Nevertheless, I’ve yearned to build a system that is small enough to transport but has enough airflow and space for larger components. And this time, I've done it.

Choosing the Case and Power Supply

The In Win Dragon Slayer looks like a big tower case, but it’s actually quite compact.
Usually I touch on performance-oriented components such as the CPU and graphics cards first, but this time it’s worthwhile to consider the case up front.

I used In Win cases years ago, but moved on as other companies produced more interesting designs. Recently, though, In Win has been shipping some seriously good cases suitable for gaming PCs. The In Win Dragon Slayer is one example: The Dragon Slayer looks like a full tower case that someone has shot with a shrink ray, yet it’s still deep enough for large graphics cards.

This chassis suffers from the same drawbacks of most small cases: Working inside it is a pain due to the restricted space. This limitation is particularly irksome around the hard-drive bay. If the case has a flaw, it’s the placement of the main hard-drive bay, directly across from the power supply. This positioning effectively limits the physical size of the PSU to a 6-inch depth, eliminating some deeper, premium power supplies. For example, I tried installing an Antec High Current Pro 750W PSU, but at a depth of 7.125 inches, it blocked the hard drive's data and power-cable connections.

That’s a lot of gear to cram into a fairly small case. Note also the really, really big graphics card.
Instead I went with a Corsair AX750, another 750W, 80-plus gold certified power supply with a standard size of 6 by 6 by 3.5 inches. Even with a standard power supply, however, routing cables is something of a chore. Fortunately, the Dragon Slayer is wide enough to allow effective cable routing behind the motherboard tray, so that mitigates the clutter a bit.

One other minor issue is that the front-panel USB 3.0 connector requires you to route a cable out the back of the case and plug it into a USB 3.0 back-panel connector on the motherboard.

Now that I've laid the foundation of the system, it’s time to take a look at the motherboard, CPU, and memory.

Selecting the Motherboard

When I set out on this project, I didn’t have a fixed budget in mind. The idea was to build a high-performance gaming system in a compact package, so the limiting factors were size and power consumption, not cost. I also wanted an overclocking-friendly, gamer-oriented motherboard. That turned out to be the Asus Maximus IV Gene-Z, a premium-quality MicroATX board built around an Intel Z68 chipset, four memory sockets, and the usual host of features you’d expect in a high-end gaming motherboard--except size.

As it turns out, the Gene-Z wasn’t terribly pricey, either. Typical prices for the board hover around $170, which is more than most MicroATX boards cost, but less than standard ATX boards of the same class do. The Gene-Z offers the typical amenities you'd want on an overclocker’s board, including on-board reset and power switches, a robust BIOS, and a high-end power-supply section.

The Asus Maximus IV Gene-Z is a high-end Z68 motherboard in a small package.
Also on the board is a rich set of connectors, including digital video outputs if you want to take advantage of the Intel Z68’s graphics virtualization, developed by LucidLogix. Virtu, as the feature is called, allows you to use a high-end discrete graphics card but connect the display to the integrated graphics built into Intel Sandy Bridge CPUs. As a result, the system will run the low-power-consumption Intel HD Graphics for normal desktop use, but the high-end GPU will kick in for gaming. The one drawback is that the integrated graphics don’t support dual-link DVI, so you won’t be able to run 30-inch, 2560-by-1600-pixel displays at full resolution. (You poor thing.)

Audio output is a touch more robust than on many motherboards, due to the Gene-Z's inclusion of Creative Labs THX TruStudio Pro software audio enhancement. TruStudio Pro is one of the few software-based audio enhancements I find pleasing, and it offers a somewhat broader sound stage.

The board also has room for a large aftermarket CPU cooler, four memory sockets, and plenty of USB ports, including USB 3.0 support. I didn’t use a high-end cooler with the system, but that’s because I planned on only modest overclocking.

Choosing the CPU and RAM

The Core i7-2600K has four cores, supports eight threads, and runs at a 3.43GHz base clock.
While the sweet spot for most gaming systems is an Intel Core i7-2500K, I went with a slightly higher-end Core i7-2600K. The additional base clock, plus Intel's Hyper-Threading, makes this system useful for more than just play--and it’s certainly no slouch on the gaming front.

High-performance memory is a must in a gaming system, so maximizing memory bandwidth is the name of the game. On the other hand, since I'm building into a fairly small chassis, the airflow will be constrained. While the Dragon Slayer case offers more robust airflow than many cases in the class do, internal cable clutter and components inevitably restrict airflow somewhat. That’s another reason I stuck with the relatively low-profile Intel CPU cooler.

A good motherboard and a good CPU deserve good memory. I wanted DDR3 that I could rely on to run at 1600MHz, since I wasn’t planning on higher memory clocks. Corsair’s 8GB Vengeance DDR3 kit fit the bill nicely, and it costs less than $60. Fast DDR3 is an incredible value these days.

Next page: The graphics card and storage, plus performance and price

1 2 Page 1
Page 1 of 2
Shop Tech Products at Amazon