It turns out GE Digital’s acquisition of ServiceMax on Monday and its Meridium buy in September weren’t the company’s only recent moves to expand its industrial IoT expertise.
Two deals for small startups, completed recently and announced on Tuesday, add interesting technologies that should help the company develop new capabilities and help enterprises meet challenges in industrial IoT. Both were announced at GE Digital’s Minds + Machines conference in San Francisco and didn’t come with publicly announced price tags.
In mid-October, the company bought Wise.io, a startup that GE says can refine machine-learning algorithms through a process like natural selection.
In the industrial world where GE Digital operates, recommendations based on machine learning carry higher stakes than they do on e-commerce sites. Instead of spitting out advice that says you should spend a few dollars on a book, industrial IoT software may recommend removing an engine from an airliner at a cost of hundreds of thousands of dollars.
“We have to be very low on the false positives and very low on the false negatives,” said Harel Kodesh, CTO of GE Digital and vice president of Predix, the company’s industrial IoT platform.
The way it’s done is to run thousands of possible algorithms to figure out which is best for the job. Wise.io specializes in techniques for carrying out that winnowing process quickly and at a relatively low cost, Kodesh said.
It’s also developed ways to do this with relatively sparse data sets. That’s useful because industrial systems are highly reliable and don’t generate many examples of how failures happen, he said. That compares with millions of customer histories that an e-commerce site may have to work with in making a product recommendation.
Last week, GE Digital also bought Bit Stew Systems, a startup that helps to determine what the bits streaming out of an edge device mean.
When devices like sensors start sending data to IoT systems that are supposed to process it, those systems may not know what the bits represent, Kodesh said. In one packet, one set of bits may represent temperature readings, another pressure readings, and so on.
GE grapples with this problem when it’s developing new products, and it’s often down to trial and error to parse out the data. This can take months.
Bit Stew’s software can do the same thing in half an hour or less, Kodesh said. It does so by using machine learning to generate hypotheses about what different bits represent and then test them out by looking at other bit streams from the same device. GE also plans to use Bit Stew’s machine-learning technology in other ways and take advantage of a lightweight application generation system from the company, he said.