But no good deed goes unpunished. New hardware based on the nearly finished 802.11ac standard is about to debut, and it will make your existing wireless infrastructure feel as though it’s mired in molasses.
Though the standards body responsible for defining 802.11ac hasn’t finished dotting all the i’s and crossing all the t’s yet, semiconductor manufacturers Broadcom and Qualcomm Atheros are already sampling 802.11ac chipsets (Broadcom has labeled its effort “5G Wi-Fi”). Both companies are closely involved in defining the standard, and they promise to deliver firmware updates to correct for any minor changes that may creep into the standard between now and the moment it is ratified (probably later this year or early in 2013).
Unlike 802.11n networking hardware, which can use either the 2.4GHz or the 5GHz frequency bands, 802.11ac devices will operate exclusively on the 5GHz band. The 2.4GHz band delivers better range, but Wi-Fi data streams that use it must compete with a multitude of other devices that operate at the same frequency–everything from microwave ovens to Bluetooth headsets). The 5GHz band contains many more available channels; and in the 802.11ac standard, each of those channels is 80MHz wide, versus the 40MHz width specified for channels under the 802.11n standard.
As we’ve seen with 802.11n networks, real-world throughput will likely be one-third to one-half as fast as the theoretical maximums. Still, even mobile devices outfitted with 802.11ac chipsets and just one transmit and one receive antenna–think smartphones and tablets–should be able to handle more than twice the bandwidth that today’s devices with 802.11n chipsets can manage. With bandwidth-intensive applications such as videoconferencing and Customer Relationship Management (CRM) moving from the desktop to smartphones and tablets, 802.11ac networks will become essential infrastructure elements for businesses large and small.
One means of overcoming the 5GHz band’s shorter range with 802.11ac chipsets will be to utilize transmit and receive beam-forming technology. Beam forming was an optional and non-standardized element of the 802.11n spec. In the 802.11ac standard, beam-forming will remain an optional feature, but its implementation will be standardized. Most of today’s 802.11n devices use omnidirectional signal transmission and reception. Signals propagate in a series of concentric rings, like the ripples you create by dropping a stone in a pond.
The first generation of 802.11ac routers, such as the Trendnet TEW-811DR, will be concurrent dual-band models that support 802.11n clients on the 2.4GHz frequency band and 802.11ac clients on the 5GHz band. These devices are likely to reach the market in the third quarter of this year. Laptops with 802.11ac chipsets should arrive in time for the winter holiday season, with mobile devices such as smartphones and tablets following in early 2013. The Wi-Fi Alliance, which has assumed responsibility for ensuring that wireless networking products interoperate properly, plans to begin its 802.11ac certification program in early 2013.
Editor’s note: This story has been updated to reflect that beam forming is an optional, not mandatory, element of the IEEE 802.11ac standard.